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Abstract

For small-strain unrestricted deformation of thin elastic shells the ®eld equations and variational principles are
rederived in terms of variables immediately representing physical quantities. The relevant strain and stress tensors

turn out to be identical to those commonly known as the `modi®ed' and the `best'. The nonlinear theory exhibits a
static-geometric duality. For orthogonal coordinates the tensor-form theory leads to a modi®cation of the LureÂ ±
Novozhilov formulation. The general theory is specialized to that of `quasi-shallow shells', to the membrane theory
and to ¯exible-shell theory, which are explored with respect to basic hypotheses and accuracy. # 1999 Elsevier

Science Ltd. All rights reserved.

1. Introduction

Thin-shell theory in intrinsic form, one avoiding any use of displacements as unknowns in the
equations, is explored in Sections 2±8.

The intrinsic approach was initiated by Reissner (1912). This work introduced for the axisymmetric
case those features, based on the duality of equilibrium and compatibility, which still are the e�ective
instruments of the shell theory. The general intrinsic formulation, including the invariant-form
compatibility equations, is due to LureÂ (1940) (although it is commonly credited to the 1941±1944 works
of Synge and Chien). This break-through became possible when Goldenveizer invented in 1939 the
general compatibility equations. (Cf Weatherburn, 1925 and the comprehensive review by Calladine,
1988). The nonlinear compatibility equations were derived in 1953 by Galimov and corrected by Koiter
(1966). (In the applications context, a similar correction was speci®ed by Axelrad, 1967.)

The intrinsic formulation has been further shaped by Reissner (cf Selected Works, 1996), Novozhilov
(cf references in his 1970 monograph), Koiter (1960, 1980), Sanders (1963), and Budiansky and Sanders
(1963). Advantages of the intrinsic approach have been ascertained by Koiter and Simmonds (1973).
The intrinsic mixed formulation has proved itself numerically robust (Simmonds, 1997), unsurpassed in
e�ectivity.
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A remark is due on the displacement approach. In the last decades it has spawned dozens of
publications (reviewed by Ibrahimbegovic, 1997) and is usually justi®ed by referring to three-
dimensional elasticity. However, in the three-dimensional theory, large displacements have to be
computed from the strains which are obtained by intrinsic analysis (LureÂ , 1970, p. 87, referring to Zak).
Moreover, in certain situations, exempli®ed by Simmonds (1984), the displacement approach is ill-
conditioned even in the linear solutions. The inexpedience of the nonlinear strain±displacement relations
makes a comparison with the intrinsic alternative, at least a convincing example, indispensable.

In what follows, the shell theory formulation originates in the, not quite conventional, treatment of the
local deformation (Sections 2 and 3). The metric and the curvature are, respectively, determined by
(quasi)-vectors aa, ba and corresponding dyadics. Subtracting the initial-geometry vectors aa, ba, rotated
with the tangent plane during the deformation, from these vectors of deformed shape, yields the strain
and curvature-change with the components Eab, rab. The essential point is thereby the decomposition of
the variables of both the rotated initial and the deformed local shape, in one and the same basis. The
`rotated', local reference basis, which moves with the tangent plane but does not deform, is employed.
(Such basis is due to Alumae, 1956 and, in a di�erent context, to Simmonds and Danielson, 1970.)

The so-de®ned strain Eab is equal to the conventional �a�ab ÿ aab�=2. On the contrary, the curvature
change rab is not identical to the standard b�ab ÿ bab. The symmetric part of the bending-strain tensor
rab is nothing else but the `best modi®ed' tensor of changes of curvature. The rab resolves the `di�culty
in de®ning a ®nite bending strain tensor, because the coe�cient of ' the moment resultant in the virtual-
work expression `is not the exact variation of anything' (Sanders, 1963). This coe�cient turns out to be
identical to drab, and the variations dEab and drab are the virtual-work conjugates of the actual stress
resultants nab and mab.

The nonlinear equations of compatibility and equilibrium (Sections 4 and 5) display a duality. The
principle of virtual strain and the duality render in Section 7 the principle of virtual stress and the
expressions of variations of stress resultants in terms of vector stress functions (relations due to LureÂ
(1940), although often attributed to the 1961 work of Guenther).

Any two of the three statements in Section 7Ðthe expressions of stress resultants in terms of stress
functions, the compatibility equations for the increments of strain and the principle of virtual stressÐ
con®rm the third one (as do the dual three statements in Section 6).

The elastic energy and the equations of elasticity, just as the strain and equilibrium, are expressed in
terms of physically de®ned strain and stress resultants (Section 8). No `modi®ed' variables are required.

The ®eld equations are presented also in orthogonal coordinates.
The specialized branches of shell theory are treated in Sections 9±12 which include the relevant literary

notes. But are the specialized branches still required? Do not computers and numerics make the general
theory su�cient for all problems? They do notÐthe contemporary judgments of leaders in shell-
structures analysis (whether in Moscow or in Virginia, U.S.A.) can be approximated by the 18th century
sentence: ``One must have hypotheses and theories to organize his results, else all remains sheer
garbage'' (Lichtenberg).

The axisymmetric theory is not the theme of what follows: it is not a simpli®ed branch, but an
integral part of the general theory. However, a remark on the axisymmetric analysis is due, owing to its
role in the nonlinear problems and as an interface to the ¯exible-shell theory. The nonlinear
axisymmetric equations, given in 1949±1950 by Reissner 1996, (pp. 225�, 275�), have been extended to
the Saint-Venant bending problem and are instrumental in the treatment of `long' tubes and open
pro®les (Axelrad, 1960, 1962, 1987). Emmerling (1982) proved the approximate treatment of 1962 to be
reasonably adequate. (The problem was reconsidered in 1981 by Boyle, Int. J. Solids Structures, p. 515.
If allowance is made for the use of E=�1ÿ v2� instead of E (cf Section 11), Boyle's results con®rm once
more those of 1962, provided the 1981 solution is original, as assured on its pp. 515, 525 and 527: ``As
far as the author is aware the only other study of the problem is . . . by Kostovetskii'').
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The work of the early 1960s made it clear that the Saint-Venant approach to thin-walled tubes and
open-sections does not have real promise for applicationsÐthe resistance to bending was found to be
reduced drastically by curvature. This has shown it to be as drastically forti®ed by sti�ening ribs or
debilitated by buckling. These factors, excluded in the Saint-Venant solutions, had to be considered. The
instruments have been provided by ¯exible-shell theory and, respectively, by local-stability analysis
(Axelrad, 1965). These ushered in the two-dimensional treatment for the problems of Karman and
Brazier, for large non-axisymmetric displacements of shells of revolution, and for the stability analysis
of states shaped by two-dimensionally variable deformation.

The specialized branches listed in the summary follow from the general theory on the basis of speci®c
hypotheses. The error of these assumptions turns out to depend on: (i) the variation of the stress state,
measured by intervals of variation La and (ii) the variation of the unit normal vector n, measured by
principal curvatures 1=Ra. For quasi-shallow shell theory (Section 9) the error estimate is L2

a=R
2
a; for the

membrane theory (Section 10) it is Rh=L2 �R � min jRaj, L � min La�. Thus, the ®rst theory turns out to
be adequate to the general theory for stress states which vary with both surface coordinates much more
intensely than the unit normal vector n. The membrane theory is adequate for states varying with both
coordinates less intensely than n. The third theory (Section 11) describes shells designed for large
deformability by small strain. These, ¯exible, shells have stress states which vary less intensely with one
surface coordinate than with the other. The ¯exible-shell theory covers the domain between those of the
other two specialized theories. The three simpli®ed theories together are adequate for nearly all realistic
shell states (Section 12, Fig. 1).

Fig. 1. Together the membrane theory (MT), the DMVK-theory and the ¯exible-shell theory (FST) are adequate for virtually any

realistic shell stress state.
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2. Shell shape, vector description

The reference surface is ®xed at the middle of the wall thickness. This is the optimum choice for
homogeneous isotropic shells (cf, e.g., Axelrad, 1987). The radius vector r, from a ®xed pole to any
point of the reference surface, is determined by Gaussian coordinates xa (the Greek-letter indices take
the values 1, 2). The coordinate x3 � z is de®ned as the distance of a point of shell volume to the
reference surface, the z-lines are straight and normal to this surface.

The tangential base vectors aa, ab and the unit normal vector of the surface a3 � n are de®ned and
denoted by

aa � r,a � aabab, aab � aa � ab, aa � aa � 1, a1 � a2 � a1 � a2 � 0,

aa � jaaj � a
p

aa, aa � jaaj � a
p aa

, aab � aa � ab;

n � a1 � a2= a
p

, a � ja1 � a2j2, a1=a
2 � a2=a

1 � a
p
: �2:1�

The comma preceding a subscript a denotes partial di�erentiation with respect to xa.
The derivatives of the unit normal vector n indicate the curvature of the surface, they constitute

curvature vectors ba (Axelrad and Emmerling, 1988):

ba � babab � n,a, bab � n,a � ab, bba � ba � ab � bala
lb: �2:2�

Here and in the following the Einstein summation convention is employed. The bab de®ned above is
equal to that of Sanders (1963). The more widely used de®nition amounting to bab � ÿn,a � ab would
cause additional minus signs in several formulas, e.g., in (2.3), (2.4) and (3.1).

The two fundamental tensors of the surfaceÐthe metric tensor aaaa and the curvature tensor aabaÐ
can, following Simmonds (1997), be de®ned in the coordinate-free formÐwith the aid of the del
operatorÐas rr and rn.

The local shape of the reference surface, and of the xa lines on it, will be described in terms of the
rotation of a plane tangent to the surface, when this plane is shifted along the coordinate lines. The
position of the tangent plane is ®xed by the normal vector n�xa�. This leads to the de®nition (2.2) of ba.
To determine a position of the plane also in its movement around the normal, the tangent plane is
considered to be bound to a linear element of the surface identi®ed by its directional unit vector t. Thus,
the local shape of the surface is determined by curvature vectors ka which, unlike the ba, include
n-components. The ka determines the derivatives of n, t, and of any other unit vector v bound to the
tangent plane:

ka � n� ba � lan, �n t v�,a� ka�n t v�: �2:3�

The curvature vector ka represents the angle kadx
a between the planes tangent to the surface at two

points with a distance aadx
a between them.

(The term nla in the ka determines the in-plane curvature of the coordinate line xa, when the angle
between this line and the t is constant along the middle surface, which is the reasonable choice of t for
orthogonal xa.)

The three coordinates xa, z label a material point; they are not changed by deformation. The other
variables de®ned above take at a point of the deformed middle surface new values which will be denoted
by an asterisk superscriptÐn�, b�a, l�a, a�a . . . : With the new values of variables replacing the initial ones,
the relations (2.3) determine k�a and the derivatives of n�, t�, v�. For a continuous surface the radius
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vector r� and any unit vector v� bound to the tangent plane are continuous functions of xaÐfor any
current shape (including the undeformed one with r, v) the continuity conditions:

v�,12 ÿ v�,21 � 0, r�,12 � r�,21 �2:4�

are ful®lled. These conditions lead to equations for the k�a and a�a. Applying to v�,1 and v�,2 the derivation
formulas (2.3) and using the relation A� �B� C� ÿ B� �A� C� � �A� B� � C, makes the left side of
the ®rst of eqns (2.4) equal to a product of a certain expression and v�. As v� is arbitrary, its cofactor
must be zero. This renders an equation which, together with the equation following from (2.4) and (2.1),
constitute the continuity conditions of the deformed surface

k�1,2 ÿ k�2,1 � k�1 � k�2 � 0, a�1,2 � a�2,1: �2:5�

These relations are, of course, valid also for the initial shape of the surfaceÐfor the ka and aa. The ®rst
of eqns (2.5) is equivalent to the three scalar relations of Gauss and Codazzi.

3. The surface deformation

A neighbourhood of a point of a deforming surface will be regarded in two stages: ®rst, after its rigid-
body movement, second, after the entire deformation. This description will use an auxiliary, local
reference basis a0

a, which is not deformed (Alumae, 1955; Simmonds and Danielson, 1970). The vectors
a0
a indicate positions attained by the undeformable basis aa after it has moved together with the tangent

plane: a0
a � a0

a � aa � ab � aab.
(If at some point of the surface the tangent plane does not move with respect to the observer, then at

this point a0
a � aa. Furthermore, the undeformable basis a0a can be made identical to aa. This is the case

when aa are de®ned to be ®xed to the tangent plane and to move with the plane to its current position.
Of course, after the xa-lines have been deformed, these aa are not anymore tangent to the xa-lines, as
are a�a � r�,a. By such de®nition of aa, the superscript `0' becomes unnecessary: the rotated local reference
basis aa can hardly be confused with the aa of the undeformed shapeÐthe basis aa need not appear in
the analysis simultaneously in its initial position, when aa � r,a, and in the rotated position.)

A unit normal vector a3 � a3 � n moves into the unit normal of the deformed surface a03 � a30 � n�.
(The strain in the volume will be considered in Section 8, on the basis of the Kirchho� hypotheses.)

Any vector V�xa� � Vja
j moving together with the tangent plane of the reference surface into its

current state rotates into V0�xa� � Vja
j0Ðthe components of V0 with respect to the rotated basis a j0 are

equal to those of V with respect to the initial basis a j. Speci®cally, the vectors aa, ba and ka, bound to
the tangent plane and rotated without being deformed, become a0

a, b0
a and k0

a, determined by the
decompositions:

a0
a � aabab0 , b0

a � babab0 , k0
a � n� � b0

a � lan
�: �3:1�

The strain of the reference surface changes a0a, b0
a and k0

a into the current-state vectors a�a, b�a and k�a.
All variables describing the current, deformed state will be decomposed in the local reference basis:
a0
a, ab0 , a0

3 � a30 � n�. The corresponding components will be denoted by a prime superscript:

a�a � a�abab� � a 0abab0 ; b�a � b�abab� � b 0abab0 , bba � b 0ala
lb: �3:2�

An advantage of the basis a0
a, displayed in (3.2): the raising and lowering of indices of tensors referred

to this basis is done with the metric of the initial geometry.
The local deformation of the surface will be described by strain vectors denoted Ea, rrra and Ka. The
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de®nition of these vectors is the crucial step. The Ea, rrra and Ka are de®ned and measured as the
di�erence between the vectors a�a, b�a and k�a of the current shape, and the respective rotated vectors
a0
a, b0

a and k0
a (which are the aa, ba and ka, moved with the tangent plane, but not otherwise changed).

With (3.1) and (3.2) the two strain vectors and their components Eab and rab are de®ned by the
following relations, in which it is essential that all the vectors, a�a and a0

a, b�a and b0
a, are decomposed in

the same basis:

Ea � Eabab0 � a�a ÿ a0
a, Eab � a 0ab ÿ aab;

ra � rabab0 � b�a ÿ b0
a, rab � b 0ab ÿ bab: �3:3�

The components Eab of the strain vector Ea represent the extensional strain andÐthrough the angles
between a�a and a0

aÐthe shear strain. This is displayed clearer by the physical components, in Section 4.
The physical sense of the curvature-change ra � b�a ÿ b0

a becomes more graphic by recalling that b�a � n�,a
and b0

a � �n,a�0.
The other curvature-change vector Ka is de®ned and determined as the change of the k0a to k�a:

Ka � k�a ÿ k0
a � n� � rrra � lan�, la � l�a ÿ la: �3:4�

The strain measures de®ned by (3.3) and (3.4) (Axelrad and Emmerling, 1988) originate from the
vectorial strain±displacement relations of Reissner's 1974 work (Reissner, 1996, p. 353�).

The Ea and rrra can, following Simmonds (1997), be de®ned in the coordinate-free form using the del
operator r stated in terms of the rotated basisÐr� � � aa0 � �,a.

The choice of the basis a0
a, that is of its position with respect to a�a, in¯uences the de®nition of the

Ea, rrraÐthe relations (3.3). Di�erent positions of the a0a mean di�erent partitions of the shear angle into
the two angles between a�a and a0

a. Speci®cally, the tensor a0
aEa can be made symmetric (Alumae, 1955).

The corresponding condition Eab � Eba takes, with (3.3) the form a�a � a0
b � a�b � a0

a, or:

a 0ab � a 0ba �Eab � Eba�: �3:5�
The standard tensors �a�ab ÿ aab�=2 and b�ab ÿ bab are simply expressed in terms of Eab and rab. The

®rst quantitatively coincides with the Eab. However, the b�ab ÿ bab (in the literature, `an obvious choice
for the strain measures') is di�erent from rab. Indeed, with (3.2), (3.3) and (3.5):

a�ab ÿ aab � a�a � a�b ÿ aab � a 0ab � Eba ÿ aab � 2Eab; �3:6�

b�ab ÿ bab � b�a � a�b ÿ bab � rab � b�a � Eb, b�a � Eb � b 0blE
l
a: �3:7�

4. Compatibility equations

The strain vectors Ea, Ka must satisfy two vector compatibility equations following from (2.5) with
a�a � a0

a � Ea and k�a � k0
a � Ka, according to (3.3) and (3.4).

The intended transformation of (2.5) requires derivatives of the rotated vectors. The n�xa � dxa�
constitutes with n�xa� the angle ka dxa. The angle between the rotated vectors n��xa � dxa� and n��xa� is
k�adxa. With k�a � k0

a � Ka from (3.4) this gives a0
a,b and a similar formula for any vector V0 de®ned as a

vector V rotated with the tangent plane:

a0
a, b � �aa, b �0 � Kb � a0

a, V0
,b �

ÿ
V,b

�0 � Kb � V0: �4:1�
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Thus, the derivatives of rotated vectors are equal to the rotated derivatives of the vectors in the initial
state plus a term re¯ecting the bending strain. The formula (4.1) is useful also for determining the
covariant derivatives.

Insert into (2.5) the expressions for a�a, k�a and their derivatives, from (3.3), (3.4), (4.1), and take into
account, the eqns (2.5) for the initial shapeÐfor aa and ka. This leads to equations:

K1,2 ÿ K2,1 � K1 � K2 � qc � 0,
ÿ
Ea,b � Kb � a0

a

�
eab �mc= a

p � 0: �4:2�

Here eab is the Levi±Civita permutation tensor: eaa � 0, e12 � ÿe21 � 1= a
p

.
The nonlinear vector compatibility equations (4.2) (Axelrad, 1981) are an extension of the linear

equation of Reissner (1974; 1996, p. 353). In the recent work (Simmonds, 1997), these equations have
become a nearly self-evident consequence of the new, hybrid form of the theory.

The `load' terms qc and mc serve in (4.2) to complement the analogy with the equations of
equilibrium, they may represent temperature expansions or be equal to zero.

For a small enough increment of deformation, the nonlinear term K1 � K2 of eqns (4.2) is negligible.
With the small increments of Ka, Ea and of qc, mc denoted by Ka, Ea and qc, mc (di�erent font), the
eqns (4.2) can be written for the increments as:

K1,2 ÿK2,1 � qc � 0,
ÿ
Ea,b �Kb � a0

a

�
eab �mc= a

p � 0: �4:3�

In these equations, the nonlinearity is represented only implicitlyÐas seen from their derivation, the
eqns (4.3), just as (4.2), are referred to the current shape. The derivatives take it into account as
exempli®ed in (4.1). This nonlinearity becomes explicit in the component form of the eqns (4.2), which is
obtained in the standard way, with the decompositions of Ea and Ka de®ned by (3.1), (3.3) and (3.4).
The corresponding six equations of compatibility for qc, mc � 0 (e.g., those of Axelrad and Emmerling,
1988, without terms of relative magnitude of the strain) contain nonlinear terms with factors
bd
0

a lb, ralrbs and El
ab
0
bl:

eab
ÿ
edlral;b � bd

0
a lb

� � 0, �4:4�

eabla;b � eabeslral
ÿ
bbs � rbs=2

� � 0, �4:5�

lb � ÿeskEsb;k, �4:6�

eab
ÿ
rba � El

ab
0
bl

� � 0: �4:7�

The semicolon subscript denotes the covariant derivative, which in all cases concerns components with
respect to the `rotated' local reference basis a0a and ab0 . The derivatives of this basis are determined by
the formulas (4.1). For small strain the bd

0
a and b 0bl can be replaced in (4.4) and (4.7) by the initial

curvature components bda and bbl.
The expression in the brackets in (4.7) coincides with b�ab ÿ bab [cf (3.7)]. This, and the symmetry of

b�ab ÿ bab, does not, however, constitute a su�cient reason for employing the b�ab ÿ bab as the main
dependent variable. It can be noted, further, that the n�-projection of the second eqn (4.2), which
constitutes the eqn (4.7), involves the r12, r21, but not raa.

The eqn (4.7) determines the skew part of the bending±strain tensor rab and, thus, renders its
remaining, symmetric part �rab. With the simpli®cations b 0blE

l
b � bblE

l
b this gives:
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rab � �rab �
ÿ
balE

l
b ÿ bblE

l
a

�
, �rab �

ÿ
rab � rba

�
=2: �4:8�

Consider now some of the relations treated above in terms of orthogonal coordinates xa and physical
components, which are de®ned and denoted by:

a12 � 0, a
p � a1a2, ta � ta � a0

a=aa, aa0 � a0
a=aaa, aa � 1=aa, �4:9�

E1=a1 � t1e1 � t2g=2, e1 � E11=a1a1, g=2 � E12=a1a2 �1 2�, �4:10�

k�a=aa � n� � tb=R 0ab � n�ka3, ka3 � la=aa, 1=R 0ab � b 0ab=aaab,

kab � rab=aaab, 1=R 0aj � 1=Raj � kaj, 1=Ra3 � ÿeabaa,b: �4:11�
The sign (1 2), after a relation with speci®ed indices 1 and 2, implies another relation, obtainable

when the indices are replaced, respectively, by 2 and 1.
The variables ea and g denote the relative extension and the shear angle.
The curvature radii Raa of the normal sections, and the physical components kab of the bending and

torsional strain, will also be denoted in the form usual in the technical literature:

Ra � Raa, R 0a � R 0aa, ka � kaa, t1 � k12, t2 � k21, t � �r12=a1a2: �4:12�
The relations (4.11) and (4.12) without the indices `�' or ` 0' are valid for the initial shape.

For the orthogonal coordinates, the compatibility equations follow with (4.9)±(4.12) from (4.4)±(4.7)
or directly from (4.2):

eab�abkb2�,a�k13=R 021 ÿ k23=R1 � t2=R13 ÿ k1=R 023 � 0; �1 2� �4:13�

eab�abkb3�,a�k1=R 02 � k2=R1 ÿ t1=R 021 ÿ t2=R12 � 0; �4:14�

k13 � �a2g�,1=
ÿ
2 a
p �ÿ �a1e1�,2= a

p � g=2R 023 ÿ e2=R 013,

k23 � �a2e2�,1= a
p ÿ �a1g�,2=

ÿ
2 a
p �� g=2R 013 ÿ e1=R 023; �4:15�

t1 � t� �t1 ÿ t2�=2, t1 ÿ t2 � g=2R 02 ÿ g=2R 01 � e1=R 021 ÿ e2=R 012 �1 2�: �4:16�
With the accuracy of the small-strain theory, some ea, g-terms in (4.11)±(4.16) can be linearized. In

particular, the expressions of 1=R 0aj following from (4.11) and (4.15) indicate:

�ea g�=R 0b3 � �ea g�=Rb3: �4:17�

5. Equilibrium

Tractions acting in the normal sections of the shell are represented by resultants reduced to the
reference surface. The force and moment resultants of tractions acting on the length a2 dx2 (not
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encompassing the extension) of the section x1 � const are de®ned and determined in the forms�
T1 G1

�
dx2 �

�
N1 M1

�
a2 dx2 � �n1 m1 � a

p
dx2 �1 2�: �5:1�

The N1 and M1 are the resultant force and moment per unit length of the x2-line.
Consider the equilibrium of an element of the shell bounded by sections xa, xa � dxa � const and

encompassing the reference-surface area dA � a
p

dx1 dx2. Denote by q dA, m dA the force and moment
resultants of the load acting on the element dA of the reference surface. The equilibrium equations for
the element are readily obtained in the form:

Ta
,a � q a

p � 0, Ga
,a � a�a � Ta �m a

p � 0: �5:2�
Here the non-linearity resulting from the deformed shape of the shell is taken into account in the

derivatives [as indicated after (4.3)]. For small strain a�a can be replaced in (5.2) by a0
a.

The components of the stress resultants and those of the distributed load are de®ned and denoted:

na � naja0
j , ma � maln� � a0

l, q � qaa0
a � qn� �j � 1, 2, 3�: �5:3�

The component equations of equilibrium follow from (5.2) in the mathematical way (cf LureÂ , 1970,
p. 885). These equations, nonlinear in the bb0a , b

0
ab-terms, are (for m � 0):

nab;a � bb0a n
a3 � qb � 0, �5:4�

na3;a ÿ b 0abn
ab � q � 0, �5:5�

na3 � mla
;l , �5:6�

0nab ÿ0nba � 0, 0nab � nab ÿ bb0l m
la: �5:7�

The eqns (5.7) determine the skew part of the tensor nab and, thus, its symmetric part �nab

nab � �nab � ÿmlabbl ÿmlbbal
�
=2, �nab �

ÿ
nab � nba

�
=2: �5:8�

Here, with the accuracy of the small-strain theory we have set ba0l � bal.
The duality of the vector equations of compatibility (4.2) and of equilibrium (5.2) is made transparent

by their simplicity. This static-geometric analogy renders each equation of equilibrium from the dual
equation of compatibility, and vice versa, by the replacement of variables:�

T1 T2 q
�
�
�
n1 a
p

n2 a
p

q
�
, �

K2 ÿ K1 K1 � K2 � qc

�
,�

G1 G2 m
�
�
�
m1 a
p

m2 a
p

m
�
, �E2 ÿ E1 mc �: �5:9�

This duality is perturbed merely by the nonlinear term K1 � K2 of the compatibility eqns (4.2). This
term can be made negligible in the incremental, step-by-step, solutions, usual for nonlinear problems.
Between the equilibrium eqns (5.2) and the compatibility eqns (4.3) for the increments there are the
simpler duality relations�

T1 T2 q
�
�
�
n1 a
p

n2 a
p

q
�
, �

K2 ÿK1 qc

�
,
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�
G1 G2 m

�
�
�
m1 a
p

m2 a
p

m
�
, �E2 ÿ E1 mc �: �5:10�

The static-geometric analogy (5.9) and (5.10) extends to the nonlinear theory the duality relations which
the theory owes to the work of LureÂ (1940) (cf Goldenveizer, 1976).

For orthogonal coordinates xa, the stress resultants (5.1) are conveniently decomposed in physical
components N aj, Mab. These are directly expressed in terms of the naj, mal de®ned in (5.3) and presented
in the simpler notation usual in the technical literature:

Na � Najtj, t3 � n�, Naj � najaaaj, Ma �Mabn� � tb, Mab � mabaaab;

N1 � N11, S1 � N12, Qa � Na3, S � �S1 � S2�=2, M1 �M11, H �M12 �1 2�: �5:11�
In terms of the physical components de®ned in (5.11), the equilibrium equations can be obtained by
specialization of (5.4)±(5.7), or directly from (5.2). Another possibilityÐthese equilibrium equations
follow from the compatibility eqns (4.13)±(4.16) by replacing the variables according to the nonlinear
duality rule (5.9):

�ka ta ea g=2 k13 k23 � ,
�ÿNb Sb Mb H ÿQ2 Q1

� �b 6� a�; �5:12�

�
R1j R 02j

�, �
R 01j R 02j

�
: �5:13�

The relations (5.13) take into account the small-strain simpli®cations (4.17). As dual to the terms with
the factors 1=R 01j in the equilibrium equations, the duality (5.13) indicates in the equations of
compatibility terms with the initial curvatures 1=R1j. Another combination of the components of the
term K1 � K2 of (4.2) results in the alternative to (5.13) relations �R 01j R2j � , �R 01j R 02j �.

The balance of moments around n�Ðthe eqn (5.7)Ðdetermines the shear resultants Sa in terms of
their symmetric part S � �S1 � S2�=2:

S1 � S� �H=R1 ÿH=R2 �M1=R12 ÿM2=R21 �=2, S � �n12=a1a2 �1 2�: �5:14�
This de®nition of S di�ers from the LureÂ ±Novozhilov formulation (cf Novozhilov, 1970), which
employs the variable S identical to the quantity 0n12=a1a2 with 0n12 as de®ned in (5.7).

6. Principle of virtual strain

Independently of material properties of the shell and of its arbitrary previous deformation, the
principle of virtual strain, equates the work done by the external forces on any virtual deformation to
the corresponding work dW done by the internal forces:� �

�q � du�m � dW� dA�
�
�N � du�M � dW� ds �

� �
dW dA: �6:1�

The integrals
� � � � dA and

� � � ds extend over the entire middle-surface area A inside the shell, and,
respectively, over the boundary contour (s ) of this area; s is the length measured along the (s ). The A
and s are measured before the deformation. The du and dW denote the virtual displacement and rotation
at a point of the middle surface; Nds and Mds are the force and moment resultants of the forces acting
on the edge length ds.

Consider the work dW done on a shell element bounded by surfaces xa, xa � dxa � const. At the
edges of the element the stress resultants Tadxb, Gadxb �b 6� a� work on the virtual displacement and
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rotation of an edge xa � dxa � const with respect to its opposite edge xa � const. Let r�xa� and r��xa�
denote, respectively, the radius vector of the surface directly before and after the virtual deformation.
The dimensions of the element are r,adx

a. The corresponding to Tadxb virtual displacement is
�du�,adxa minus the contribution dW� r,adxa of the rigid-body rotation. The virtual deformation rotates
r,a into a0

a � r,a � dW� r,a, which makes da0
a � dW � r,a. Finally, �du�,1 � dr�,1 � da�1, and, from (3.3),

a�1 ÿ a0
1 � E1. The virtual work of the resultant T1dx2 is:

T1 dx2 � ��du�,1ÿdW� a0
1

�
dx1 � T1 dx2 � �da�1 ÿ da0

1

�
dx1 � T1 dx2 � dE1 dx1: �6:2�

The moment resultant Ga works on the virtual rotation �dW�,a dxa, which is the virtual change of the
angle k�a dxa between the edges of the element. The de®nition (3.4) Ka � k�a ÿ k0

a, leads to the expression
of the angle �dW�,a dxa in terms of the curvature change Ka:

�dW�,a dxa � dk�a dxa � dKa dxa: �6:3�

With (6.2) and (6.3) the work of the inner forces, accounted for in the principle (6.1), is

dW � �Ta � dEa � Ga � dKa� dx1 dx2=dA � �na � dEa �ma � dKa� � nabdEab �mabdrab: �6:4�

There follow also from (6.2) and (6.3) the equations between the virtual strains and virtual
displacements

dEa � �du�,a � a�a � dW, dKa � �dW�,a, �6:5�

where it is taken into account that the di�erence between the a�a and a0
a is by (3.3) the in®nitely small

virtual strain: a0
a � a�a ÿ dEa.

The linear-theory expressions of the strains and changes of curvature follow from (6.5), when the
virtual rotations and displacements are equal to small actual ones: Ea � u,a � aa � W, Ka � W,a.

The ®rst of these equations renders, with the zero transverse shear Ea � n � 0 (Section 8), the rotations
in terms of displacements.

Each of the three statementsÐthe principle (6.1), the equilibrium equations (5.2) and the eqns (6.5)
between virtual strain and displacementsÐfollows from the other two. Consider these relations which
con®rm (6.5), (5.2) and (6.1).

The virtual strain±displacement relations (6.5) can be obtained by inserting into the principle, (6.1)
with (6.4), expressions of q, m in terms of the stress resultants, which follow from the equilibrium eqns
(5.2).

The equilibrium eqns (5.2) follow from the principle (6.1) and (6.4) after inserting the virtual strain±
displacement relations (6.5). Besides the equilibrium equations, this yields the boundary conditions for
the edge loading and also the variational, Galerkin, form of the equations and the conditions.

The equilibrium equations in terms of only the symmetric tensors �nab and mab follow from the
principle when the internal work (6.4) is transformed to

dW � �n abdEab �mabd �rab: �6:6�

The equality of the ®rst term of (6.6) to that in (6.4) is assured by Eab � Eba of (3.5). The second term
of (6.6) is made approximately equal to mabdrab of (6.4) by the known (e.g., Axelrad and Emmerling,
1988) relation

mab � mba�1� 0�h=R��, �6:7�
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where R is the minimum absolute value of the normal-section curvature radius at a point of the
reference surface, 0�h=R� has the order-of-magnitude of the shell-theory error (Section 8).

Finally, the principle of virtual strain (6.1) is con®rmed by the virtual strain±displacement relations
(6.5) and the equilibrium equations (5.2)Ðwith q, m, du and dW expressed by (5.2) and (6.5) in terms of
stress resultants and virtual strains, the left of (6.1) turns out identical to its right-hand side speci®ed by
(6.4).

The equilibrium equations in terms of the variables 0nab, de®ned in (5.7), follow from the principle
(6.1) with the expression of dW which results from (6.4) when rab is presented by (3.7) in terms of the
b�ab ÿ bab

dW �0nabdEab �mabd
ÿ
b�ab ÿ bab

�
: �6:8�

7. Principle of virtual stress

The duality relations (5.10) suggest a principle, which is entirely dual to that of virtual strain in (6.1)
and (6.4). It is the principle of virtual stress governing the strain increments K, E, Ka and Ea:� �ÿ

qc � df �mc � dg
�

dA�
�
�K � df � E � dg� ds � ÿ

� �
dW dA: �7:1�

The internal work dW is given by the expression dual to (6.4). With the accuracy equivalent to that of
mab � mba in (6.7), it is determined by only the symmetric parts of increments of the relevant strains.
Retaining for the increments of �rab, Eab the notation of these variables themselves we have:

dW � Ka � dma � Ea � dna � �rabdmab � Eabd �nab: �7:2�
The formulation (7.1) and (7.2) of the virtual-stress principle (Axelrad and Emmerling, 1990) avoids any
use of displacements or their gradientsÐit is totally intrinsic.

The principle of virtual stress renders the compatibility eqns (4.3) for the increments Ka, Ea of
unlimited small-strain deformation, i.e. of arbitrary displacements and rotations. The sole restrictionÐ
the increment of deformation must be small enough to obviate the term K1 �K2. Of course, this
restriction does not hinder the use of the principle for nonlinear problems.

A further manifestation of the static-geometric duality, stated in (5.10), are relations dual to (6.5).
Just as the strain resultants determined by (6.5) identically satisfy the linear compatibility equations, or
those for increments, the stress resultants, dual to these strains, have the following expressions which
identically satisfy the equlibrium equations (by q, m � 0)

dmaeab � �df �,b � a�a � dg, dnaeab � �dg�,b
�
eab � eaba

�
: �7:3�

The stress functions f and g, introduced here, are dual to the u and W of (6.5).
The eqns (7.3) can be traced back to those given by LureÂ (1940).
There are three basic statements dealt with in the current Section 7: the compatibility eqns (4.3), the

formulas (7.3), which express the variations of the stress resultants in terms of the stress functions, and
the principle (7.1). The three statements and the relations between them are dual to those which are
basic in Section 6. Each of the three can be recovered, and thus con®rmed, by means of the other two.

Speci®cally, the principle (7.1) renders, in conjunction with (7.3), the compatibility eqns (4.3) and the
boundary conditions for strain, as well as the Galerkin form of both. The compatibility eqns (4.3) and
the principle (7.1) render the eqns (7.3). Finally, the compatibility eqns (4.3) and the formulas (7.3) for
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dma, dna con®rm the principle (7.1). That is, the virtual workÐthe left side of (7.1) with (4.3) and
(7.3)Ðturns out identical to the expression (7.2) for dW.

8. Elasticity relations

The strain and stress in the volume of a thin shell are determined on the basis of the following
(Kirchho�±Love) hypotheses:

(a) In the analysis of strain, particles comprising a straight line normal to the middle surface can be
assumed to constitute such a normal after the deformation, and the change of distance between these
particles can be disregarded.
(b) In the stress±strain relations the in¯uence of the stresses acting on the sections parallel to the
plane tangent to the reference surface can be disregarded.

These assumption are known (e.g., Koiter and Simmonds, 1973) to introduce errors which have the
relative order of magnitude of

max
ÿ
h=R, h2=L2, h2=d 2, Z

�
� 1: �8:1�

Here Z and 1=R are the maximum absolute values of the principal strain in the shell and of the normal-
section curvature; d denotes the distance to the shell edge.

In (8.1) and in the following, L is the minimum of intervals of variation La of any function F�xa�
which is substantial in the description of the stress and deformation (cf Koiter, 1966, p. 20):

1=La 0 jdF=aadxaj=Fm, Fm � maxjFj, L � min La: �8:2�
(The sign `0 ' between two quantities indicates the equality of their orders of magnitude.)
The physical meaning of L1 is clari®ed by a simple case F � sin �x1=c�, a1 � 1. The de®nition (8.2)

gives in this case, the interval of variation L1 � c.
A direct expression of the hypothesis (a) is constituted by the following formulas for the radius vector

R� of a point in the deformed shell volume (R� has no direct relation to the maximum normal-section
curvature 1=R) and by formulas for the deformed and the rotated bases �g�a, g0

a� of the three-dimensional
metric

R� � r� � zn�, g�a � R�,a � a�a � zb�a, g0
a � a0

a � zb0
a: �8:3�

The de®nition (3.3) of the reference-surface strain (of Ea, rrra� is now to be extendedÐthe strain in the
shell volume is de®ned and denoted by ggga and gab which are expressed in terms of Ea, rrra:

ggga � gabab0 � g�a ÿ g0
a � Ea � zrrra, gab � Eab � zrrrab: �8:4�

With the basis vectors g�a, g0
a of (8.3), the standard Cauchy strain formula gives:ÿ

g�ab ÿ gab
�
=2 � gab � Dab, g�ab � g�a � g�b, gab � g0

a � g0
b,

2Dab � z
ÿ
Ea � b�b � Eb � b�a

�� z2
ÿ
rrra � b�b � rrrb � b�a

�� ÿg�a ÿ g0
a

� � �g�b ÿ g0
b

�
: �8:5�

The term Dab has the estimate:

Dab � �h=R�0�gab�: �8:6�
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This means, the term Dab can be neglected in (8.5)Ðits relative magnitude does not exceed the error
(8.1) of the basic hypotheses of the thin-shell theory.

For thin shells, the vector de®nition (8.4) of the strain gab is equivalent to the standard one

gab � Eab � zrab3
ÿ
g�ab ÿ gab

�
=2:

With the z-term of Dab retained, the formula (8.5) amounts to �g�ab ÿ gab�=2 � Eab � z�b�ab ÿ bab�. This
determines the strain not by the rab, as in (8.4), but, with equivalent accuracy, by b�ab ÿ bab [given in
terms of rab by (3.7)].

For a shell made of Hookean elastic material, the strain energy per unit area of the reference surface
is in accordance with the assumption (b) determined by the formula (Koiter, 1960):

V � 1

2

�
E

1� v

�
galgam � v

1� v
gabglm

�
gabglm g

p
dz, �8:7�

where the integral extends over the shell thickness, E denotes the modulus of elasticity and v is Poisson's
ratio.

The de®nitions of gab, aab and g � det jgabj indicate the estimates:

gab � aab � �z=R�0�aab �, gab � aab � �z=R�0
ÿ
aab
�
, g � a� �z=R�0�a�: �8:8�

With this, the elastic-energy formula (8.7) decomposes into a main term and an additive of relative
magnitude of h=RÐof the error (8.1) of the thin-shell theory. This additive has to be dispensed with.
The elastic energy is determined solely by Eab and �rabÐthe symmetric components of the strain vector
Ea and of the symmetric part aa0ab0 �rab of the tensor aa0ab0rab:

V � 1

2

E

1� v

�
aalabm � v

1� v
aabalm

� �
EabElmh� �rab �rlmh

3=12
�
: �8:9�

A similar expression can be obtained from (8.7) for nonhomogeneous and anisotropic material. It
must, however, retain a term determined by products of the membrane and bending strains. This term
can be minimized by appropriate choice of the reference surface (cf, e.g., Axelrad, 1987). For the present
case of homogeneous isotropic material the appropriate reference surface is the middle surface and the
bounds of integration in (8.7) leading to (8.9) are z � ÿh=2 and h=2.

The variation of the elastic energy dV is equal to the corresponding virtual work of the inner forces
(6.6):

dV � dW � �nabdEab �mabd �rab: �8:10�

For the mutually independent virtual strains and (8.9), this gives the elasticity relations

�nab � dV=@Eab � Eh

1ÿ v2

��1ÿ v�E ab � vaabEa
a

�
,

mab � @V=@ �rab � D
h
�1ÿ v� �rab � vaab �ra

a

i
, D � Eh3=

�
12�1ÿ v2�

�
: �8:11�

Solved with respect to the strain resultants these relations become

Eab � �1=Eh���1� v� �nab ÿ vaab �na
a�, �rab � �12=Eh3���1� v�mab ÿ vaabm

a
a�: �8:12�
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The elastic energy in terms of the stress resultants is determined by inserting (8.12) into (8.9), and the
constitutive eqns (8.12) directly con®rm the variation of the elastic energy dV to be equal to an
expression, similar to (7.2):

dV�mab, nab � � dW � �rabdm
ab � Eabd �nab: �8:13�

For orthogonal coordinates xa the elastic-energy density and the constitutive eqns (8.11) and (8.12),
presented in terms of the physical components of strain and stress, de®ned in (4.10), (4.12), (5.10) and
(5.11), are

2V � ÿN2
1 �N2

2 ÿ 2vN1N2

�
=Eh� S2=Gh�D

ÿ
k21 � k22 � 2vk1k2

�� t2Gh3=3, �8:14�

e1Eh � N1 ÿ vN2, gGh � S, M2=D � k2 � vk1, H=
ÿ
Gh3=6

�
� t �1 2�: �8:15�

The energy expression (8.14) is a mixed one: the membrane part is determined in terms of the resultants
N1, N2, and S, the bending partÐin terms of the strain resultants dual, in the sense of (5.12), to N1, N2,
and S. Between these two parts of V, as well as between the two corresponding groups of elasticity
equations in (8.15) can be observed a duality complementing that stated in (5.12).

In the case of lines-of-curvature coordinate (cf Sections, 4, 5 and 8), the invariant tensor-form theory
specializes to a modi®cation of the LureÂ ±Novozhilov formulation. This straightens the drawback, ®rst
indicated by Budiansky and Sanders (1963): `` . . . the LureÂ ±Novozhilov reduction performed in lines-of-
curvature coordinates is not consistent with any general tensor representation of the modi®ed stress
variables''. The consistency requires merely employing the appropriate strain and stress variablesÐthe
symmetric parts of the tensors rab and nab [determined in (4.8), (4.16), (5.8) and (5.14)]. Quantitatively,
the modi®cation concerns only the torsion and shear components (t and S ).

9. Intensely variable deformation. DMVK-theory

Most results on elastic buckling and postbuckling of shells are due to one specialized branch of the
shell theoryÐthat of `quasi-shallow' shells. This theory achieves a striking simpli®cationÐall problems,
linear and nonlinear, are solved with the aid of a system of merely two, reciprocally dual, equations.

The theory has been founded, nearly simultaneously, by Donnell (1933) and by Mushtary in the
U.S.S.R. (Both treated the buckling of a circular cylinder in torsion.) A similar approach was developed
in 1938 by Marguerre for shallow shells and in 1941 by Karman for plates. In 1944 Vlassov extended
the theory to noncylinder shells and introduced the Airy function. However, the bending strains were
still determined in terms of displacements, and this by the linear expressions with only the normal
de¯ection retained. That is, the nonlinear problems were treated on the basis of an approximation of the
linear relations (identical to those introduced in the ®rst work on shells (Aron, 1987) and severely
criticized ever since). The illegitimacy of this part of the Donnell theory for large rotations was certi®ed
in 1963 by Donnell himself in an unpublished lecture `General shell displacement±strain relations'. But
there was no alternative1 till the work of Libai (1962) and Koiter (1966) gave the theory those main
features it still has. Koiter (1966) termed it `a theory of quasi-shallow shells or a theory for shells of

1 Despite its illegitimate displacement-approach part, the theory did not encounter grave di�culties in applications. This `skating

on thin ice' (Koiter, 1966) was made possible by the concentration on a speci®c class of problems (cf Section 11)Ðthose with a

small wave-length deformation pattern (of buckling modes), which involves predominantly normal de¯ection and no large

rotations.
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small Gaussian curvature'. As discussed in the following, this theory is applicable to shallow shells not
unconditionally. Therefore, it will be in the sequel referred to as Donnell±Mushtary±Vlassov±Koiter
(DMVK) theory. Consider for this theory: (1) its standard formulation; (2) error estimates; and (3)
physical hypothesis and applicability.

9.1.

The DMVK-theory starts in the relevant key work (Koiter, 1966) with two assumptions: (a) The
maximum absolute wall-bending strain and middle-surface extension (hr=2 and Z), in the shell region
under consideration, are assumed to have comparable orders-of-magnitude in the sense

h=R� hr=Z� min �R=h, 1=hr�: �9:1�
On the basis of (9.1), Koiter (1966) introduces two simpli®cations of the general theory:

(i) The two equations of tangential-forces equilibrium are used without the terms depending, directly
and through na3, on the moment mab; the dual compatibility equationsÐwithout terms depending,
directly or through lb, on the Eab.

(ii) The stress and strain tensors nab, rab are set equal to their symmetric parts �nab � nba�=2, �rab
� rba�=2.

This means dropping the terms with Eab and lb in (4.7) and (4.4), as well as the terms with mab and
na3 in (5.7) and (5.4). The equations become

r2l;1 ÿ r1l;2 � 0, rab � �rab � �rab � rba �=2; �9:2�

n1l;1 � n2l;2 � ql � 0, nab � �nab �
ÿ
nab � nba

�
=2: �9:3�

(b) The Gaussian curvature K of the undeformed middle surface is assumed to be small compared with
the square of the minimum interval of variation L:

KL2 � 1: �9:4�
This is considered to justify the interchange of the sequence of covariant surface di�erentiation, which
makes the following expressions to a general solution of the simpli®ed equations of equilibrium and
compatibility (9.2) and (9.3):

rab �W;ab, nab � ealebmF;lm � Pab: �9:5�
The W�xa� and F�xa� are a three times continuously di�erentiable curvature function and an Airy

function; Pab denotes a particular solution of the eqns (9.3).
The remaining equations of compatibility, (4.5) with (4.6), and of equilibrium, (5.5) with (5.6), render

after inserting (9.5) the system of equations for F and W

r4F� Ehealebm
ÿ
bab �W;ab=2

�
W;lm � 0, �9:6�

Dr4Wÿ ealebmb 0abF;lm � q � 0: �9:7�

Here r4 � r2r2 with r2 denoting the two-dimensional Laplacian operator. The Pab-terms are not
written out, for the sake of simplicity.
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The above standard theory still leaves open three questions:

(i) Is the accuracy of the theory dependent only on the maximum values of the bending and
membrane strain (hr, Z), irrespective of their speci®c components?

(ii) Can the basic hypotheses be stated in terms which allow one to assess whether the theory is
adequate for a problem, before its solution has been obtained?

(iii)Does the theory need to be de®ned by any physical criterion, besides that of shallow shape or
curvature restriction?

9.2.

Consider the accuracy of the DMVK-theory, as determined by the error of its simpli®cations. This
involves terms dropped in the equations of compatibility and equilibrium, ®rst, to obtain the eqns (9.2)
and (9.3), second, to satisfy these equations by the general solution (9.5).

The relative error dl of the compatibility eqns (9.2) is determined by the relation of the terms of (4.4)
dropped in (9.2) to one of the terms remaining there:

dl � maxfjeabblalbj=jeabeldrad;bjg: �9:8�

The dual to dl error estimate Dl of the equilibrium eqns (9.3) is determined by the relation of terms
of (5.4) dropped in (9.3), to one of the terms retained there.

The estimate (9.8) depends on the assessment of the covariant derivatives. Such derivative with respect
to any of the coordinates xa is, following Koiter 1966, (p. 34), estimated by means of the minimum
interval of variation L

jral;bgj0 jralj=L2, jbagEal;bj0 jEalj=�LR�: �9:9�

The factors bag are estimated here by the absolute maximum normal-section curvature 1=R. Closer
estimates can be obtained when the terms with b21, b

1
2 may be dispensed with. This is the case, when the

xa-lines are the curvature lines, or follow these lines approximately. For such coordinates, the terms
dropped in (4.4) and (5.4) to obtain (9.2) and (9.3) can be estimated in terms of physical components
de®ned in (4.10) and (4.11) and gaa � ea, g12 � g21 � g

dl 0 max j�Eab=rabh��h=Rd �0 max j�gab=kabh��h=Rd �j �d 6� b�; �9:10�

Dl 0 max j�mab=nab�=Rbj0 max j�kabh=12gab��h=Rb�j, �9:11�

where Rd and Rb denote the principal radii of curvature of the reference surface.
The estimates (9.10) and (9.11) indicate an answer to the question (i) of Section 9.1. However, these

estimates depend on the values of the stress and strain resultants. The accuracy of the theory for a
problem can be checked only after a solution for this problem has been evaluated. The way to avoid
this di�culty and also the clari®cation of the above questions (ii) and (iii) is suggested by the general
solution (9.5): all stress and strain variables can be expressed in terms of W and F. The rab and nab are
given in terms of W and F directly by (9.5), and it is derivable:

na3 � Daal�r2W�;l, Eheablb � ÿaal�r2F�;l: �9:12�
Further, it has to be accounted for, that the stress state can vary with the two coordinates xa with
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di�erent intensities. To take this into consideration, a certain extension of the estimates (9.9) is
indispensable. The covariant derivative with respect to xa will be estimated by the formula (9.9), but
with the L replaced by the interval La of variation with respect to the speci®c coordinate xa:

jfbd;aj0 jfbdjaa=La: �9:13�

To assess the terms dispensed with in the DMVK-theory, it only remains to estimate the relation
between F and W. This is done with the help of Eqs. (9.6) and (9.7) which provide relations between the
r4F or r4W and the second term of the respective equation. These terms are, just as r4F and r4W,
invariants. They may be estimated for lines-of-curvature xa. The relevant order-of-magnitude estimates,
following from (9.6) and, respectively, (9.7) are:

jr4Fj0 EhjWj=jRaL
2
bjmin, Djr4Wj0 jFj=jRaL

2
bjmin �a 6� b�: �9:14�

Here Lb denote the values of the intervals of variation, de®ned as Lb by (9.13), when the xb-lines
coincide with the curvature lines; jRaL

2
bjmin is the smaller of the jR1L2

2j, jR2L
2
1j.

The relations (9.12)±(9.14) lead to the estimates of the relative errors in the eqns (9.2) and (9.3).
Remarkably, these errors have equal orders of magnitude:

Dl 0 dl 0 �L1L2�2=�RljRaL
2
bjmin� �a 6� b�: �9:15�

Further, errors of the DMVK-theory are caused by replacing the rab and nab by the symmetric parts
�rab and �nab of the respective tensors. This amounts to an approximation of eqns (4.8) and (5.8). The
estimates of the corresponding relative errors, determined similarly to (9.15), are:

jrab= �rab ÿ 1j0 jnab= �nab ÿ 1j0j max jLajL3=
�
RjRaL

2
bjmin

�
: �9:16�

Finally, the inaccuracy, caused by the interchange of the sequence of covariant surface di�erentiation,
turns out to be, in consequence of LaeL, somewhat higher than its estimate (9.4). However, this error,
just as the one assessed in (9.16), are under those of the basic simpli®cations estimated in (9.15).

The estimates (9.15) and (9.16) do not depend on stress and strain variables and, thus, are in many
cases serviceable for a problem without its solution having been evaluated (cf an example in Section 12).

9.3.

The physical meaning of the DMVK simpli®cations is displayed by the error estimates (9.15) and
(9.16), in which La and La characterize the variability of the stress state, the R and Ra represent the
variability of n. The estimates show the DMVK-theory to be adequate for stress states which vary with
both coordinates xa much more intensely than the unit normal n. This meaning of the theory is made
more transparent by the simpler estimates which follow from (9.15) and (9.16) for the lines-of-curvature
xa. With the overall error of the DMVK-theory denoted D, this estimate is

D E Da 0da0 L2
a=R

2
a: �9:17�

The estimates (9.17) de®ne problems, for which the error of the DMVK-theory does not exceed that
of the general thin-shell theory, by the conditions L2

a=R
2
aE h=R. Two examples illustrating the accuracy

and the applicability limits of the DMVK-theory are discussed in Section 12. The answer to question
(iii) of Section 9.1 is: the applicability of the theory of `quasi-shallow' shells depends not on the shell
shape alone, however shallow it may be.
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The domain of the DMVK-theory, determined by the condition D E max �La=Ra�2 E h=R, is plotted
in Fig. 1, where the coordinates Ra=La represent the stress state and the geometry at a point.

10. Low variability stress state. Membrane theory

The resistance of a thin wall to bending is weak. Thin shells can withstand a large load only through
the momentless, membrane, stress state. This kind of stress state is the optimum for shell structures
designed for strength and sti�ness.

The equilibrium of a shell element which is supported by the membrane resultants alone is described
by the equations following from (5.4), (5.5) and (5.7) after dropping all their terms dependent on the
moments mab and the transverse resultants na3:

nab;a � qb � 0, nab � nba �10:1�

b 0abn
ab ÿ q � 0: �10:2�

The number of these equations (four) is equal to the number of the unknowns nab. By appropriate
boundary conditions, and by the compatibility equations approximately ful®lled, the resultants nab are
statically determinate. Once the solution of the eqns (10.1) and (10.2) has been obtained, the wall
bending can be evaluated and its in¯uence estimated with the aid of the constitutive and compatibility
equations. This will not be discussed further. The gaol will be a simple assessment of the applicability
domain and the accuracy of the momentless theory. (The fundamental treatment of the membrane stress
state is represented by the extensive asymptotic analysisÐcf Goldenveizer, 1976 and Ciarlet and Lods,
1996.)

The momentless equations of tangential-force balance (10.1) are employed in the DMVK-theory, their
accuracy has been estimated in (9.11). In terms of the components of stress, more signi®cant for the
membrane theory, the estimate (9.11) indicates for the error of the eqns (10.1) the order:

Da 0max j
ÿ
sabm =s

ab
n

�
h=6Rbj: �10:3�

Where sabm � jmabj6=h2 denotes the maximum through the wall thickness stress resulting in the bending
and torsional moments: sabn � jnabj=h represents the stress component resulting in nab; 1=Rb is the
principal curvature.

The relative error of the eqn (10.2) is estimated by the relation of the dropped na3-term of (5.5) to the
main term of those, nabb 0ab, retained in (10.2). With the estimate of the quantity nabbab, similar to that
used in (9.14) the error of (10.2) has the magnitude (no summation here):

D 0 maxjna3;a j=maxjnab=Raj: �10:4�
The expression of na3 in terms of mla follows from (5.6). The assessment (9.13) of the covariant

derivatives (admittedly, in this case merely a rough estimate) leads to the estimates of the derivatives
jna3;a j0 jmbaj=LaLb. The formula (10.4) becomes

D 0 maxjmba=LaLbj=maxjnab=Raj:
This estimate is now to be approximated by a simpler and more conservative one. This is done with

LaLb and Ra replaced by the smaller quantities L2 and R, as well as with the mab and nab represented by
the corresponding maximum absolute bending stress sabm and, respectively, the membrane stress sabn . The
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estimate (10.4) of the error of the membrane eqn (10.2) becomes

D 0 max
ÿ
sabm =s

ab
n

�
hR=6L2: �10:5�

The estimates (10.3) and (10.5) depend on the relation of the bending and membrane stresses in a
problem under consideration. That is, the estimates are determined in terms of quantities known only
after the solution of the problem has been obtained. In the membrane theory there is no possibility to
eliminate the stress resultants from the error estimates. (In the DMVK-theory, Section 9, this has been
made feasible by the general solution F, W.)

However, the purpose, the very meaning of the membrane theory, involves a restriction on the value
of just this relation sabm =s

ab
n . Indeed, although the bending stress sabm cannot be totally avoided in real

structures under realistic loads, this theory has a practical sense only if the order of magnitude of the
bending stress sabm does not, at any rate, exceed that of the membrane stresses sabn . That is, the
membrane theory is intended for the cases when

sabm =s
ab
n < 0�1�: �10:6�

The magnitude of D is, according to (10.5) and (10.6), higher than that of Da from (10.3). Thus, the D
assesses the overall error of the membrane theory system (10.1) and (10.2). With this, the error,
determined by (10.3)±(10.5), does not exceed in its magnitude order that of the general theory when
D E h=R. Allowing for the bending stresses, as their upper limit, that in (10.6), the accuracy condition
of the membrane theory is

D 0 hR=6L2 E h=R: �10:7�
This condition amounts to R2=L2 E 6. It delimits the domain of the membrane theory on hand of the

relation of the intensities of variation: of n, represented by the normal-section curvature
1=R � max j1=Raj, and of the stress state, represented by 1=L � max �1=La�. The membrane theory is
adequate for the stress states varying not much stronger than the unit normal vector n. The applicability
domain of the membrane theory (MT) is plotted in Fig. 1.

11. Large displacements by small strain. Flexible-shell theory

Large displacements and rotations have for decades been the prime target of the elastic-shell theory.
The axisymmetrical and other one-dimensional nonlinear problems have their e�ective specialized
treatment (cf references in Section 1). However, the e�orts to solve the nonlinear shell problem for
arbitrary geometry and arbitrary stress state by frontal assault of the general theory have not produced
concepts expedient for applications. The displacement approach, characteristic for these attempts, was
not helpful.

The nonlinear problems of shell structures are of two classes. The ®rst concerns shells designed for
strength and sti�ness. These problems are characterized by: (a) a membrane stress as an optimum; (b)
the only states which may involve substantial nonlinearity before collapse are buckling and
postbuckling; (c) rotations remain small. The nonlinear analysis has been for a long-time concentrated
on problems of this class. This has been with rare clarity indicated by Koiter 1966, (pp. 38 and 44):
`` . . .(nearly) inextensional bending, . . . excluded in well designed shell structures''. ``Comparatively small
wavelengths of the deformation pattern on the middle surface are indeed a common feature of most
nonlinear shell problems, . . . ''. Another key work (Goldenveizer, 1976, p. 103) tells: `` . . . the basic stress
state is momentless (if it does not degenerate)''.
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Problems of this class are adequately described by the DMVK-theory (Section 9) or, in the cases of
elongated buckles, when L1 � L2, by the ¯exible-shell theory discussed in the sequel.

The second class of problems concerns shells designed for elastic deformability, for large displacements
and rotationsÐ¯exible shells. To achieve ¯exibility, the stress state has to be of the wall-bending kind.
The membrane deformation cannot contribute signi®cant displacements. (To recall: by a relative
extension e, a length l extends merely by el.) Moreover, not any kind of wall-bending leads to
deformability. In particular, ¯exibility cannot be accomplished by the deformation of small-wavelengths
patternÐthe rotation is an integral of the bending strain.

Consider for the ¯exible-shell theory (FST): 1. The basic hypothesis. 2. Compatibility and equilibrium.
3. Elastic energy, constitutive equations and the resolving system. 4. Extended FST. 5. Applicability
domain.

11.1.

The hypothesis, su�cient to reduce the general theory to the FST, consists of one single assumption
re¯ecting the feature characteristic for all ¯exible shells despite their diversity (cf Axelrad, 1987, 1992):
the local shape of the shell and its basic stress state vary with one coordinate xa less intensively than
with the other.

In terms of the relation f of the intensities of variation of the local shape and of the stress state
�1=Ra, 1=La� the hypothesis reads:

jaj,1=a1jE fjaj,2=a2j, jaj,1=a1jEf 2jaj, 2=a2j; �11:1�

f � L2=L1, f 2 � 1, jR2=R1j0 f, jLa=Ra E 0�1�: �11:2�

As de®ned above: j � 1, 2, 3; aj � jajj, a3 � n.
The basic assumption shows the FST to be not indi�erent to the choice of surface coordinates xa.

The coordinate lines, for which the ratio R2=R1 of the normal-section curvatures is minimum, are
preferable for the formulation of the FST. These xa-linesÐthe curvature lines of the surfaceÐproved
advantageous for the analysis of all ¯exible-shell structures, known to the author. Such coordinates xa,
with a12, b12 � 0, are used for the FST in the sequel. The resulting formulation of the theory can by the
change of coordinates be cast in the invariant tensor form (discussed by Axelrad and Emmerling, 1987).

11.2.

Consider the simpli®cations in the compatibility and equilibrium equations, to be inferred from the
FST hypothesis, and the relevant errors.

The starting point provide eqns (4.2) and (5.2), which indicate for their main terms nearly equal
orders of magnitude: jK1,2j0 jK2,1j, jT1

,1j0 jT2
,2j. These relations, together with the hypothesis (11.1)

and (11.2) and the estimates (8.2) for the derivatives, lead to jK1j0 fjK2j, jT2j0 fjT1j, which,
decomposed in physical components, de®ned in (3.4), (4.11) and (5.11), yield:

jk1an� � ta � k13n�j0 fjk2an� � ta � k23n�j, jN2jtjj0 fjN 1jtjj: �11:3�

As follows from the eqns (4.12), (4.16), (5.10) and (5.12): k12 0 k21 0 t, N21 0 N12 0 S.
Further, the n� components in (11.3) (ka3 and Na3) are, at most, of the order of magnitude of the

tangential components. With this, the eqns (11.3) render the order-of-magnitude relations
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maxjk1a, tj0 fjk22j, max jN2a, Sj0 fjN11j: �11:4�
With the variables expressed by the elasticity relations (8.15), the estimates (11.4) indicate further four
resultants which are of secondary magnitude, and later turn out to be dispensable in the FST:

maxje2, gG=Ej0 je1j, max jM1, HE=2Gj0 fjM2j: �11:5�
Consider the relative magnitude of the terms with the e2, g, M1 and H in the equations of compatibility
and equilibrium.

The eqns (4.13)±(4.16) can be written in the form:

k2,1 �
ÿ
a21t

�
,2=a1 � k2, 1d1,

t,1 � �a1k1 �,2=a2 � k2a1=R13 ÿ �a1e1�,2=a2R 02 � t,1d2; �11:6�

k1 � ÿk2R 02=R1 ÿ �a1e1�,22R 02=a1a22 � t2R 02 � k1d3: �11:7�
The dj � dj�g, e2� denote the sum of all terms of the corresponding equation, which include g and e2.

With the estimates (11.5) and (11.2), the relative errors of dropping in (11.6) and (11.7) the terms with g
and e2 turn out to have the orders of magnitude:

d�g, e2� � jd3j0 j�e1=k2��E=G� L1=R13 �R2=L1L2j, jdaj < d: �11:8�
The relation e1=k2 remains to be estimated.

The equations of equilibrium dual to (11.6) and (11.7) follow from these according to the relations
(5.12) and (5.13). [The t2R 02 of (11.7) is replaced by two terms indicated by the duality (5.12): the ®rst,
StR 02 � SR 02=R

0
21 is the dual to t2R 02 � tR 02=R

0
21; the second, StR 02Ðdual of the term tR 02=R21, that

happens to be zero in (11.7) because of 1=R21 � 0.] All terms of the equilibrium equations containing
the variables H and M1 are represented by expressions Dj�H,M1� dual to the dj�g, e2� of (11.6) and
(11.7). It can be found similarly to (11.8)Ðwith the aid of the estimates (11.5) and (11.2)Ðthat the
relative errors of dropping the H-, M1-terms have the magnitude

D�H,M1 � � jD3j0 j�M2=N1 ��4G=E� L1=R13 �R2=L1L2j, jDaj < D: �11:9�
The quantity M2=N1 remains to be estimated.

Terms which are in the FST small, include, besides those represented by dj�g, e2�, Dj�H,M1�, the
nonlinear terms: t2R 02 in eqn (11.7) and 2tSR 02 in the equation of equilibrium dual to (11.7). According
to (11.4), t and S are of the order of f in relation to k2 and, respectively, to N1. In relation to the left
side of the corresponding equation, i.e., to k1 in (11.7) or to N2 in the dual equilibrium equation, these
nonlinear terms are in the thin-shell theory negligible. Indeed, with k2h0Z, there is:

jt2R 02=k1j0 fjk2R 02j0 fZR 02=h, jtSR 02=N2j0 fjk2R 02j0 fZR 02=h: �11:10�
When the terms with g, e2 and those estimated in (11.10), are dropped, the compatibility eqns (11.6)

and (11.7) can be reduced to one equation with two variables k2, e1; the dual set of equilibrium
equations without H-, M1-terms can be reduced to an equation for N1 and M2. The two equations read:

V �a1k2 � �W�a1e1 � � 0,

V 0�a1N1 � ÿW�a1M2 � � ÿa21q1,1 � @ 2
ÿ
a31q2

�� @2a21@2ÿa1R 02q�; �11:11�
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where it is denoted

V� � � � � ,11 ÿ @2
ÿ� � a21=R13

�� @2a21@2ÿ� � R 02=R1

�
, @ 2� � � @ � � =a2@x2,

W� � � @ 2
ÿ
a21=R

0
2

�
@2� � � @ 2a21@2R 02@2@2� � :

The operator V 0� � is de®ned as V� � with R13 and R1 replaced, respectively, by R 013 and R 01. This re¯ects
the duality of the nonlinear equations indicated in (5.13).

For cylinder shell, in linear approximation, V� � � � �,11, R 02 � R2 and, with the elasticity relations e1 �
N1=Eh, M2 � Dk2 discussed in the following, the eqns (11.11) reduce to those of Vlassov (cf Novozhilov,
1970).

The evaluation of the FST errors can now be completed. For this purpose, the necessary estimates of
e1=k2 and M2=N1 follow with (11.5), (11.1) and (11.2) from (11.11). Signi®cantly, the two quantities are
of the same magnitude order:

je1=k2j0jM2=N1j0 L2
2=jR1j: �11:12�

With this, the relative errors (11.8) and (11.9) have the magnitudes:

d�g, e2�0 f 2E=G� f 2L1=jR13j, D 0 f 24E=G� f 2L1=jR13j: �11:13�
This shows terms with g, e2 in the equations of compatibility and terms with H, M1 in the equations

of equilibrium to have the relative magnitude of f 2E=G. The hypothesis and its expressions (11.2) infer
dropping these terms.

11.3.

The elastic-energy density V, must satisfy the conditions of consistency with the equations of
compatibility and equilibrium (Axelrad and Emmerling, 1990). In the present case, when in these
equations the terms with g and e2 and, respectively, H and M1 have been dropped, the consistency
conditions are

@V=@S � g � 0, @V=@t � 2H � 0, @V=@N2 � e2 � 0, @V=@k1 �M1 � 0: �11:14�
With (11.4), there follows from (8.14) the energy density and the full set of two elasticity equations:

2V � N2
1=Eh�Dk22, �11:15�

e1 � @V=@N1 � N1=Eh, M2 � @V=@k2 � Dk2: �11:16�
The equations of elasticity (11.16) require a cautionary remark. They di�er from the general Eq.

(8.15) by the absence of terms ÿvN2=Eh and vDk1. However, some works (treating axisymmetric and the
related Saint-Venant problems) neglect not the terms with N2 and k1, dropped in Eq. (11.16) as
demanded by the consistency, but those with e2 and M1, which are neglected in the compatibility and
equilibrium. This produces equations e1 � �1ÿ v2�N1=Eh and M2 � �1ÿ v2�Dk2 di�ering from the
correct relations (11.16) by what one of these publications terms ``the factor 1ÿ v2 which ghosts in the
literature . . . ''. Regrettably, `the literature' includes reputable work.

The two eqns (11.11) and the elasticity eqns (11.16) constitute a closed system which determines the
N1 and k2. All stress and strain resultants and the energy density, are expressed in terms of the N1 and
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k2. The variables N1 and k2 take the role of a general solutionÐthe role similar to that of the Airy
function F and curvature function W in the DMVK-theory.

Despite the simpli®cations, particularly far reaching in the energy expression (11.15) and in the
elasticity Eqs. (11.16), inside a wide domain of problems the FST is adequate in accuracy to the general
shell theory. This is displayed by all known (¯exible) shells designed for small-strain large displacements,
i.e. displacements of the magnitude order of the overall dimensions of the shell.

11.4.

The FST can be extended to encompass the stress states with f � L2=L1 as large as 0(1) and/or with
the structural anisotropy of E=G� 1, i.e., with weak sti�ness with respect to shear or to bending. Such
cases are out of reach of the above formulation of FSTÐthe estimates (11.13) give the overall error of
the theory D 0 f 24E=G 0 1.

The indicated extension of the FST is achieved by retaining the shear g and the torsional moment H.
This involves merely moderate complicationsÐthe g and H are simply expressed by the elasticity
relations in terms of S and t, variables indispensable in the FST.

The e�ect of retaining g and H on the accuracy of the FST is clearly displayed by the estimates
(11.13). The error caused by dropping the g- and H-terms, is re¯ected in (11.13) by the terms f 2E=G
and f 24G=E. The error of the extended theory, which drops e2 and M1 but not the g- and H-terms, has
according to (11.13) the estimate:

d 0 D 0 f 2L1=jR13j: �11:17�
For many ¯exible-shell problems, e.g. for those of tube bends and bellows, L2 is small compared to
jR13j0 jR1j, which makes the error (11.17) small even by f 0 1. Indeed, L2=L1 � f 0 1 means L1 0 L2.
This makes d 0 f 2L1=jR13j0 L2=jR13j � 1.

For the theory retaining g and H, the four consistency conditions employed in (11.14) render:

2V � N2
1=Eh�Dk22 � S2=Gh� t2Gh3=6, �11:18�

e1 � N1=Eh, M2 � Dk2, g � S=Gh, H � tGh3=6: �11:19�
The g- and H-terms preclude the reduction to the system (11.11). The resolving system can consist of

the compatibility eqns (11.6) and (11.7) and the two dual equations of equilibrium. This system
determines the variables k2, t and N1, S, which describe the deformation and the stress of the sections
x1 �const or of the corresponding shell boundaries.

The extended FST, goes back to the analysis of short-radius tube bends, which exempli®es the
properties of this theory and the FST boundary conditions. This formulation of FST, and its
alternativeÐone having as a one-dimensional limit case the Reissner axisymmetric equationsÐhave also
been useful in the nonlinear and nonaxisymmetric analysis of bellows (Axelrad, 1980, 1987, 1992).

Retaining the shear strain g was originally proposed by Schnell (1957), for cylinder shells.

11.5.

The physical de®nition and the applicability domain of the FST are the further inferences of its
hypothesis. As discussed above, the theory dispenses with e2 in the equations of compatibility and with
M1 in equilibrium. The same is true for the boundary conditions, which result with the FST hypothesis
from the variational principles. At an edge x1 � const, the theory sets only two boundary conditions,
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those of the membrane theory. At the same time, for the sections x2 � const, FST retains in its
equations and boundary conditions, all resultants of the general theory.

Thus, the FST represents adequately the stress states which are free of substantial bending in the
sections x1 � const, but may have it in the sections x2 � const. This two-fold approach is summed up
by the term semi-momentless theory (the term applied by Novozhilov, 1970, for the linear theory of
cylinder shells, developed in 1930 by Vlassov, Pasternak, a.o.).

What the FST excludes, by dispensing with e2- and M1-terms, is the part of the stress state which
varies with x1 intensively. When caused by forces acting at the line x1 �const, in particular, on an edge,
this part of deformation fades out inside a short distance 0 h

p
R from the zone of loading. It is known

as the edge e�ect. The boundary conditions at an edge x1 � const, excluded by the FST, are the
principal two of the (four) conditions of the edge e�ect. If required, the edge-e�ect part of the stress
state can be superimposed on the part determined by the ¯exible shell theory.

The FST focuses on the `main part' of the stress state, one extending far over the shell from the zone
of loading or from an edge. (The partition of the stress-state into the main part and the edge-e�ect has
been intensively investigated for cylinder shells by Goldenveizer, 1970).

Advantages of the FST are given by simpli®ed equations of lower order in x1, by specialized
variational formulations and the physical transparency resulting from the hypothesis, and last, but not
least, FST facilitates numerical solutionsÐthe intensively variable in x1 component of the stress state
being excluded, it need not be eliminated numerically. This reduces the number of the required ®nite
elements or integration intervals by factor h=R.

The attributes of the FST are also helpful by physical nonlinearities. The equilibrium and
compatibility equations of the FST provide a closed system with merely two relevant constitutive
equations. The two serve the roles analogous to those of the eqns (11.16) e1 � N1=Eh; M2 � Dk2. (A case
known to the author: a physically nonlinear FST solution yields the external collapse pressure for a
bellows in a state of large elastic±plastic axisymmetric deformation. The pressure is rendered by a PC-
program. It is con®rmed by experiments.)

The ¯exible-shell theory is adequate in accuracy to the general theory when the relative magnitude of
its overall errorÐthe main term of Eq. (11.13)Ðis under h=R. This de®nes the FST domain (Fig. 1) by
the condition

d�g, e2�0D�H,M1 �0 �L2=L1�24E=G E h=R: �11:20�

12. Concluding remarks

While the applicability of the membrane and DMVK theories sets for both intervals of variation La

the same bounds, the accuracy condition (11.20) of the FST states for the L1 and L2 di�erent, indeed,
opposite requirements. As should be expected recalling the hypotheses of the three specialized theories,
many of the problems adequately described by one of them are governed by neither of the others. This
is displayed by their applicability domains sketched in Fig. 1.

Compare the accuracy and applicability of the DMVK-theory and of the FST on examples, which
treat the buckling of two circular cylinder shells under radial pressure.

By appropriate conditions on the edges supported in their planes, the buckling mode (cf, e.g.,
Axelrad, 1983, p. 191) consists of n � 2, 3, . . . circumferential waves extending over the entire length l of
a cylinder shell with radius R and wall thickness h:

k2 � C sin �x1=L1� sin �x2=L2 �, C � const, L1 � l=p, L2 � R=n, f � pR=nl: �12:1�
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The DMVK-theory gives the critical pressure p for this mode (cf the reference above):

pR3=D � n2
ÿ
1� f 2

�
� 12�1ÿ v2 �f 4�R=h�2=

�
n2
ÿ
1� f 2

��
: �12:2�

The FST renders for this problem

pR3=D � n2 ÿ 1� 12�1ÿ v2�f 4�R=h�2=�n2 ÿ 1�: �12:3�
The result (12.3) di�ers from (12.2) in two points which display the two divergent basic features of the
respective specialized theories. The replacement of n2 in (12.2) by n2 ÿ 1 in (12.3) re¯ects the di�erent
treatment of the tangential balance of forces and strains. Namely, the terms with n23 and l1 are dropped
in the DMVK-theory but retained in the FST. The second di�erenceÐthe replacement of 1� f 2 in
(12.2) by 1 in (12.3)Ðre¯ects the unequal treatment of the balance of forces and strains in the normal
direction. The terms n13;1 and l2;1 of eqns (5.5) and (4.5) are retained in the DMVK-theory but dropped
in the FST.

We compare the numerical results of the two theories for (i) a short cylinder, buckling in a sti�-shell
manner, and (ii) for a long cylinder, with the buckling pattern of the ¯exible-shell class.

(i) For the short shell, with l � R by R � 50h, the DMVK-solution (12.2) determines n � 7 and the
buckling pressure p � 86:1D=R3. The accuracy of this result is adequate to the general shell
theory: with L2 � R=n from (12.1), the error estimate (9.17) gives D 0 �L2=R�2 � 1=49 1 h=R.

For the same cylinder, the FST-solution (12.3) yields n � 7 and p � 71:5D=R3, that is 17% less than
p � 86:1D=R3 of the DMVK-theory. In this case f 2 � �pR=nl �2 � 0:201, which shows the problem to be
outside the adequacy domain of the FST (which is f 2 � 1). The estimate (11.13) gives the FST error
D 0 0:201 4E=G12:0Ðthe actual di�erence found above is merely 17%. This case shows the
applicability of the FST to be wider than the domain estimated by (11.13).

(ii) For the long shell, l � 20R, R � 50h, the FST-solution (12.3) yields n � 2 and p � 3:346D=R3.
With f � pR=nl � 0:07855, the error estimate (11.13) is: D00:006E=G 0 h=R. This indicates the
FST result to involve no additional error, compared to the general theory.

For the same cylinder the DMVK-theory (12.2) gives n � 2 and p � 4:305D=R3, which is 28% above
the correct FST result p � 3:346D=R. The error estimate (9.17) of the DMVK-theory gives
DE 1=n2 � 0:25, which con®rms the problem to be outside the DMVK domain.

In both cases in which the error is substantial, it is less than the estimateÐthe estimates rate the
partial errors, caused by approximations in the compatibility or in equilibrium. These errors are mostly
of the same magnitude order and may compensate each other. It is an advantage of the mixed, intrinsic
formulation.
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